Multimedia Sensor Dataset for the Analysis of Vehicle Movement

ACM MMSys 2017

Wonhee Cho and Seon Ho Kim
Integrated Media Systems Center
Viterbi School of Engineering
University of Southern California, LA, CA
seonkim@usc.edu
Motivation

• GPS Trajectory has been widely used and analyzed.
• Analysis for driving pattern requires target data.
• Can be collected GPS and 4 sensors with videos using smartphones.
• Can correct accuracy of GPS and other sensor data and label movement patterns using videos.
Motivation (Cont...)

• Why Various Sensor Data?
 – GPS: collected by one second unit and include many errors
 – Other Sensors (e.g., accelerometer): errors can be accumulated over time, no absolute reference to the position
 – Video: no position by itself and it is difficult to qualify locations and movement. limitations for the machine to recognize the situation.

• Approach : solution for improvement accuracy
 – GPS: Generation speed correction with filtering
 – Other Sensor: calibrate location and collect detailed movements
 – Video : Label the exact situation by human
Dataset

• MediaQ Geo-Tagged Video and Sensor Data
 – Mobile multimedia management system to collect, organize, share, and search mobile multimedia contents using automatically geo-tagged metadata (mediaq.usc.edu)
 – Using MediaQ, one can collect GPS signal, Acceleration, Orientation, Gyroscope, Magnetic sensor data and matching movement video clips
Dataset (Cont...)

• Dataset Description
 – GPS Data:
 • Timestamp/ Timezone Offset (+hh:mm or -hh:mm (e.g., 07:00 when recording in Los Angeles))
 • Latitude/ Longitude/ Altitude/ Accuracy
 – Other Sensor Data:
 • Timestamp/ Timezone Offset
 • Acceleration (x, y, z), Orientation (Azimuth, pitch, roll)
 • MagneticField (x, y, z), Gyroscope (x, y, z)
 – Video Data Data:
 • Videos that match collected sensors in frame level
Type	Size
Driving Time | 22.4 hours
Driving Distance | 731.6 mile
Video Size | 50.4 G byte
Data Collection

• Device & Preparation
 – A cradle mounted on dashboard
 – Mounted horizontally to align the acceleration sensor z-axis.

• Covered Area
 – Downtown LA and Downey

• Collection Method (patterns)
 – Normal Driving, Aggressive Driving
 – Speed Bump Passing, Uneven Road Passing
Data Processing

Preprocess
- Merge
- Speed Generation
- Kalman Filtering

Graph Generation

Map & Photo Drawing

GPS Trajectory

Sensor Data
Preprocess

• Combine GPS and Sensor data (difference time scale)
 – Sample frequency - GPS: 1 second, Sensor data: 200 ms

• Device Independent Data Conversion
 – Calibration different scale between Android and iOS
 – (Acceleration x scale and include Gravity or not)

• Speed Generation using GPS coordinates
 – The speed is calculated by dividing the distance between current GPS coordinate and previous coordinate
 \[v(t) = v(0) + \sum a \times dt \]

• Speed Generation using Acceleration
MediaQ Sensor Data Analysis

Filename: wonhee_2017_2_24_Videotake_1487957711650.csv
Time = 19.1 min, Distance = 12.734 km, 7.912 mile, Phone_os=android, User_name=wonhee

- kacc_x
- kacc_y
- kacc_z
- g speed
- k speed
- a speed
- azimuth
- pitch
- roll
- gyro_x
- gyro_y
- gyro_z
- mag_x
- mag_y
- mag_z

MAP
GRAPHS
IMAGE
User Interface
Abnormal pattern check using video
Program and Dataset File

Tool: Python, File: GenSensor.py

Source: http://mediaq.usc.edu/mmsys17
Conclusion and Future Direction

• Presented data collection from mobile camera and sensors using MediaQ app
• Provide dataset, program for processing
• Presented sample cases using collected data
• Will apply for all kinds of mobile devices
 – Blackbox camera in automobile, police bodycam,
 – Drone videos
Police and Soldier Movements

Bodycam w/o sensors

Simulating Bodycam w/ sensors
Ground Videos vs. Aerial Videos

Spatial Coverage of Aerial Video

Azimuth θ_a

Roll θ_r

Pitch θ_p

the north
Thanks

Seon Ho Kim, Ph.D.
University of Southern California
seonkim@usc.edu