
WiFi Network	Access	Control	for	IoT
Connectivity	with

Software	Defined	Networking
Winston	Seah

School	of	Engineering	&	Computer	
Science

Background
! IoT – simple	devices,	specific	services	(e.g.	some	

require	DHCP,	others	may	not).
! NAC	has	been	traditionally	divided	along	the	lines	

of	OSI	MAC	layer	and	network	layer.
! Very	few	are	programmable
! SDN	presents	an	opportunity	for	programmability	

and	working	across	both	network	and	MAC	
layers.

Network	Access	Control	(1)
Captive	Portal
! Presents	an	authentication	page	

to	a	user	when	trying	to	
connect	to	a	web	page.

! User	inputs	necessary	data	for	
authentication	&	authorisation.

! If	unsuccessful,	access	is	denied	
or	user	is	prompted	again	to	
enter	credentials.

IEEE	802.1x
! Port-based	NAC;	
! Port	à device’s	Media	Access	

Control	(MAC)	address
! Role-based	access	control	to	

authenticate	users	&	apply	
policies	(authorisation)

! No	human	interaction	needed

Network	Access	Control	(2)
Captive	Portal
ü Flexible	and	not	

constrained	to	any	
specific	technique	/	
standard

✘ Unsuitable	for	devices	
that	do	not	have	a	human	
user

IEEE	802.1x
ü Widely	deployed;	uses	

Extensible	Authentication	
Protocol	(EAP)

✘ Not	supported	by	all	devices
✘ Not	suitable	for	guests	as	

they	must	pre-obtain	the	
credentials	or	certificates	
for	authentication	

!"#$%&'()'*+',--

!"#$%&'*)'*+'.-- !"#$%&'/)'*+'0--

, 1- 1- 1- 23
01- 1- 1- 23

,- 1,- 1,- 1,-

0-10-10-10-

!"#$%"&&'%

SDN	in	a	NutShell (1)

Current configuration:
 router bgp 300
 network 1.0.0.0
 network 2.0.0.0
 neighbor 10.10.10.10 remote-as 100
 neighbor 10.10.10.10 route-map localonly out
 neighbor 10.10.10.10 route-map as100only in
 neighbor 20.20.20.20 remote-as 200
 neighbor 20.20.20.20 route-map localonly out
 neighbor 20.20.20.20 route-map as200only in
end

Router B: AS 100

Router A: AS 300 Router C: AS 200

10.10.10.10

20.20.20.20

!"#$%$&'()'*(

1.0.0.0/8
2.0.0.0/8

Command Line
Interface (CLI)

SNMP

NETCONF

Operating System

ASIC

R
o

u
ti

n
g

C
LI

V
P

N

M
o

n
it

o
ri

n
g

…
…

Hardware
Switch

Operating System

ASIC Hardware
Switch

SDN Agent
(Sending/Receiving msg)

SDN Controller
(Server)

Operating System

Hardware
(CPU, Memory, etc.)

R
o

u
ti

n
g

C
LI

V
P

N

M
o

n
it

o
ri

n
g

…
…

Programming
interface

Forwarding Table Entry

Traditional Networking Software Defined Networking

Traditional	
Networking

Software	
Defined
Networking

SDN	in	a	NutShell (2)

SDN Controller

Network Application

Routing Load
balancing

Traffic
Monitoring Security

VLAN, STP
OSPF, BGP

VLAN, STP
OSPF, BGP

VLAN, STP
OSPF, BGP

VLAN, STP
OSPF, BGP

VLAN, STP
OSPF, BGP

Tr
ad

iti
on

al

N
et

w
or

ki
ng

So
ft

w
ar

e
D

ef
in

ed

N
et

w
or

ki
ng

FTE
FTE

FTEFTE

FTE

FTE

SDN	in	a	NutShell (3)
Table

0
Table

1
Table

n

Execute
Action

Set

Packet In
Ingress
Port metadata metadata Packet Out

Egress
Port

Goto function

Goto function

Multi	flow	
table	is	a	
pipeline	of	
single	flow	
tables.

Our	work	within	context
Work (Ref[])

SDN
L2	control L3	control GranularitySingle

Table
Multi-
Table

CapFlow[1] � � Flow

RFC	7710[8] � �

SecureMAC [3] � Device

NoCat[4] � Flow

Our	work � � �
Device/Flow/	
Application

Our	contributions
! A	unified	NAC	framework	for	network	layer	+	

MAC	layer	+	(application	– not	shown	in	this	
paper).

! We	show	how	multi	flow	table	in	OpenFlow	is	
provisioned	to	realise	the	unified	NAC.

! Tested	in	operational	network.

A	multi	flow	table	approach	for	
unification

! Each	table	implements	(or	a	combination	of	
tables)	the	specifics	of	a	certain	protocol	(e.g.	
DNS,	DHCP,	802.1x).	

! E.g.	802.1x	and	Captive	portal	use	both	IP	and	
MAC	tables.

! DHCP	uses	only	IP	table.

NAC	based	on	DNS

! Message	exchange	sequence	for	DNS.
! Red	boxes	show	the	point	where	DNS	tables	are	used	for	

looking	up.	

NAC	based	on	DHCP

! Message	exchange	sequence	for	DHCP.
! Red	boxes	show	the	DHCP	packets	matching	a	single	table.

NAC	based	on	Captive	Portal

! Message	exchange	sequence	for	Captive	portal.
! Boxes	show	the	different	tables	used	for	flow	matching.	

Test	bed

Results:	Functional	test
! We	compare	the	average	number	of	packets	sent	

and	received	to	demonstrate	the		functionality	of	
the	NAC	framework.

! Take	home	from	this	set	of	figures:
" Captive	portal:	access	onset	delay	is	longer,	more	

packet	exchanged	for	DNS	&	DHCP.
" 802.1x	:	access	delay	is	shorter,	fewer	packets	

exchanged.

Packets	Sent	– Captive	Portal

Packets	Received	– Captive	Portal

Packets	Sent	– 802.1x

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 2

á1
04

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Time (ms)

Pa
ck
et
s
pe

rS
ec
on

d

Number of Packets Received - 802.1X

Host
Internet
Portal

Packets	received	– 802.1x

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9 2

á1
04

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Time (ms)

Pa
ck

et
s

pe
r

Se
co

nd

Number of Packets Sent - 802.1X

Host
Internet
Portal

Side-by-side	comparison	(Sent)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

á104

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Time (ms)

Pack
etsp

erSe
cond

Number of Packets Received - 802.1X

Host
Internet
Portal

Side-by-side	comparison	(Rcvd)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

á104

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Time (ms)

Pack
etsp

erSe
cond

Number of Packets Sent - 802.1X

Host
Internet
Portal

Performance	Comparison
IV. EVALUATION

This section presents the results of performance evaluation
with the captive portal and 802.1X. The topology used for
performance evaluation is shown in Fig. 6; the gateway and
Internet are Raspberry Pi B+ running the network DHCP, DNS
servers, as well as a web page (to emulate the ÒInternetÓ). Hav-
ing this reduces outside interference from other devices and
removes the variability of requesting web pages from the real
Internet, consequently providing more consistent measurement
results.

Fig. 6. Evaluation network topology. Each device is connected via the
unmanaged switch, which is for the management of the devices and the
Portal/Controller link. A number of Hosts connect to an Access Point (AP)
via Wi-Fi denoted by the dashed line, depending on the number required for
the test. The ÒInternetÓ is a Raspberry Pi running HTTP, DNS and DHCP
servers for the network.

We evaluate the number of packets per second received
and sent by each node (client, portal and the Internet) every
100ms over the course of the authentication processes. This
aims to show the difference in trafÞc volume the two different
authentication mechanisms have, and where the trafÞc is going
during the authentication process.

The ConÞguration Control Coordinator starts the controller
application and capture portal, after 20s the ConÞguration
Control Coordinator starts the packet captures on the Portal
and Internet. The 20s delay allows FreeRADIUS and hostapd
to load and operate, no measurements are taken during the
startup phase. The clients then initiate requests (DHCP, HTTP)
and packet traces are taken at the client, portal, Internet and
Controller. The evaluation consisted of 50 runs each for both
CapFlow and 802.1X authentications.

Fig. 7 and Fig. 8, show the number of packets received and
sent over the duration of the authentication process with the
captive portal. Both Þgures show that the Internet (red bars)
is sending and receiving packets, these packets that appear
before 1000ms are DHCP and DNS. Between 5000 ms and
7600 ms another set of DNS and ARP messages are exchanged

TABLE I
AVERAGE AUTHENTICATION DELAY (IN UNITS OF MILLISECONDS) AND
AVERAGE NUMBER OF PACKETS EXCHANGED(DENOTED BY # PKT) FOR

INCREASING NUMBER OF FLOWS. CORRESPONDING VARIANCES(ACROSS
50 RUNS) CALCULATED IN THE FINAL ROW.

Flows DNS DHCP HTTP 802.1X

Delay #Pkt Delay #Pkt Delay #Pkt Delay #Pkt

1 64.55 36.35 66.30 47.29 66.16 58.22 9.05 17.32

10 65.38 40.18 69.21 52.03 72.35 63.61 10.11 16.91

50 68.37 40.41 71.18 51.93 75.86 64.08 11.08 17.14

500 72.10 40.02 73.05 52.09 76.32 63.95 11.04 17.09

1000 73.55 40.56 74.91 52.00 78.08 64.02 11.08 17.54

Var 1.99 3.71 4.01 4.92 4.64 6.21 1.61 0.63

and, Þnally at 8000ms (peak number of packets per second for
both receive and send) we see the retrieval of the web page
that the client was originally trying to retrieve.

Fig. 9 shows that no packets are received by the host
because it has not been authenticated while Fig. 10 shows that
the host is alive and sending out packets during the 802.1X
authentication process. At 2000ms the authentication process
begins and completes successfully at 2010ms. Up until this
time the charts show that the host receives no packets, although
it is sending DHCP and ICMPv6. However in terms of delay
performance, the total delay for authentication is dominated
by OpenFlow message exchanges which are used in both
the 802.1X and capture portal method leading to negligible
delay performance (both Fig. 8 and Fig. 10 show successful
authentication around the 2000ms mark).

The Þnal evaluation compares the average authentication
delay (in milliseconds) and the average number of packets
exchanged (denoted by #Pkt, normalised to the number of
ßows and packet size of 500 bytes) for increasing number
of ßows. Our results show that the 802.1x achieves around
80% lower authentication delay and 43%Ð72% fewer packets
compared to the captive portals. The results also indicate
low variance (i.e.< 5), suggesting that the #packet and
delay measurements are precise over the 50 runs. Between
the different NAC using DHCP, DNS and HTTP, there is no
signiÞcant difference in average authentication delay because
the main contribution of delay comes from the OpenFlow
control plane interaction with the switch. However, the number
of packets exchanged is highest for installing ßows based on
HTTP exchanges and lowest for DHCP.

V. CONCLUSION

In this paper, we demonstrated an open implementation of
WiFi network access control with SDN. Our evaluation shows
that the 802.1X authentication uses fewer packets than the
captive portal option, largely due to the captive portal using
HTTP, and having to download the entire web page. One
immediate avenue for improvement would be to integrate it
into a proper database where users/devices could also belong
to a group, and then have rules deÞned by groups, e.g. a
distinct group for each class of IoT devices. Having one rule

Highlights	of	our	work
! IoT devices	access	diverse	network	functions	

via	different	protocols	e.g.	DNS,	DHCP,	HTTP.	
! Unified	network	access	control	(NAC)	with	fine	

grained	control	using	SDN.
! NAC	using	IEEE	802.1x	:	72%	less	overhead	

and	80%	lower	delay	compared	to	capture	
portal.

Ongoing	&	Future	Work
! Deployed	in	our	campus	for	field	trials
! Implement	a	proper	database	where	

users/devices	belong	to	groups	and	then	have	
rules	defined	by	groups,	e.g.	a	distinct	group	
for	each	class	of	IoT devices.

THANK	YOU!

Contact:	Winston.Seah@ecs.vuw.ac.nz
URL:	http://www.ecs.victoria.ac.nz/~winston

